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Evidence for dark matter

Expected

Observed

- galaxy rotation curves
- bullet clusters
- gravitational lensing
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- Dark matter (DM) is made of stable particle
- Weakly interacting with SM particles (WIMPs) 
- Mass around the weak scale
- DM is entirely due to a single particle
-  ! + ! → SM + SM is the only process important for 
determination of relic abundance
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Searching for dark matter
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Searching for dark matter

- Dark matter (DM) is made of stable particle
- Weakly interacting with SM particles (WIMPs) 
- Mass around the weak scale
- DM is entirely due to a single particle
-  ! + ! → SM + SM is the only process important for 
determination of relic abundance

Jim Buckley’s talk

All three approaches probing the same interaction

Jeter Hall’s talk This talk!



The Large Hadron Collider

2011 2012

Energy 7 TeV 8 TeV

Integrated 
luminosity

5 fb-1 Expected ~15 fb-1

proton-proton collider



The Large Hadron Collider
proton-proton collider

2011 2012

Energy 7 TeV 8 TeV

Integrated 
luminosity

5 fb-1 Expected ~15 fb-1

First 8 TeV collisions! 
~ 27 pp interactions per bunch crossing 



The Large Hadron Collider
proton-proton collider

2011 2012

Energy 7 TeV 8 TeV

Integrated 
luminosity

5 fb-1 Expected ~15 fb-1

Event with 29 pp interactions
Looking for 2 DM particles in this!



The Tevatron
proton-antiproton collider

Energy 2 TeV

Max. instantaneous 
luminosity 

4.3 x 1032 cm-2s-1 
(~30M collisions/s)

Integrated luminosity ~10 fb-1



LHC
- two general, multi-purpose detectors
- ATLAS and CMS



Tevatron
- two general, multi-purpose detectors
- CDF and D0

CDF

D0
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LHC can directly produce 
WIMP pairs

LHC can produce heavier 
particles beyond the SM that 
decay to WIMP pairs and SM 

particles

Searching for dark matter at colliders

LHC cannot produce WIMPs

Slide adapted from Tim Tait talk at Moriond
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Missing Transverse Energy

At the heart of all DM searches at colliders : Missing transverse energy (MET)

- challenging quantity to measure 
- sensitive to mis-measurements, detector effects, backgrounds
- but well controlled in both ATLAS and CMS
- higher luminosity---> multiple interactions within the same bunch crossing ---> 
measurement of MET more challenging
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LHC can directly produce 
WIMP pairs

LHC can produce heavier 
particles beyond the SM that 
decay to WIMP pairs and SM 

particles

Searching for dark matter at colliders

LHC cannot produce WIMPs
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Extra dimensions
-In UED, the dark matter candidate is a 
massive vector particle which is stable
- In Randall-Sundrum, the right-handed 
neutrino is stable
- Both theories produce WIMPs thermally 
in the correct abundance if the WIMP 
mass is at the TeV scale.

Supersymmetry
- additional symmetry between 
fermions and bosons
- heavy super-partners for each 
SM particle
- lightest SUSY particle (LSP) is 
neutral, stable. Good candidate 
for dark matter

Other models with DM candidate
- variants of technicolor models

17

DM candidates in new physics models
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R-parity conservation - the lightest SUSY 
particle is stable, good candidate for dark 
matter; neutralino, gravitino

- can use NLSP decay to tune relic density

- signatures include jets, Met, leptons, 
photons.

- jets +Met most generic channel

18

Supersymmetry
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Simplified)models)
•  In)SMS,)a)limited)set)of)hypotheBcal)parBcles)and)decay)chains)are)

introduced)to)produce)a)given)topological)signature,)
–  typically)with)the)BR=1)

•  Results)are)produced)in)terms)of)efficiencies)and)cross)secBon)upper)limits)
as)funcBon)of)masses.)

•  Results)are)compared)with)a)reference)cross)secBon)
–  Typically)calculated)at)NLO)
–  Also)scaled)to)demonstrate)the)effect)
)of)different)branching)raBo)or)topology))
degeneracy.))
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Searches for SUSY

Jets and missing energy 
in final state
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Searches for SUSY

20

Gluino masses below 900 GeV are excluded for neutralino masses up to 
about 300 GeV
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Figure 7: Observed and expected 95% C.L. exclusion limits in the (mg̃,mχ̃01
) plane (Gbb models).

For each scenario, the signal region selection providing the best expected limit is chosen.

R=max( ft , fb, fτ)/min( ft , fb, fτ) (7)

where ft , fb, fτ are the t, b and τ Yukawa couplings evaluated at the scale Q = MGUT. In both
DR3 and HS model lines, the Yukawa couplings unification occurs at a few percent level for
low gluino masses, while as mg̃ increases, the Yukawa couplings unification also increases until
mg̃ = 650(620) GeV where R = 1.14(1.1) for the DR3 (HS) model line. Consequently, the most
favored range of gluino masses is excluded for the two SO10 model lines considered. However,
Yukawa unification can still be realized at a few percent level for heavier gluino masses in
different model lines [61].

11 Conclusions

An updated search for supersymmetry in final states with missing transverse momentum and
at least one or two b-jets in proton-proton collisions at 7 TeV is presented. The results are
based on data corresponding to an integrated luminosity of 2.05 fb−1 collected during 2011.
The search is sensitive mainly to gluino-mediated production of sbottoms and stops, the su-
persymmetric partners of the third generation quarks, which, due to mixing effects, might be
the lightest squarks. Since no excess above the expectations from Standard Model processes
was found, the results are used to exclude parameter regions in various R-parity conserving
SUSY models.

20

mass&
squark,&gluino&

Δm&≈&
missing&ET!&

Does&SUSY&hide&from&our&analyses?&

How&could&strong&SUSY&producaon&exist&but&be&hidden?&

David&Berge&(CERN)&/&1&Mar&2012&

Maybe the neutralinos are almost as 

heavy as the squarks and gluinos so that 

not enough missing ET is produced in the 

decays to select SUSY events? 

Maybe squarks and gluinos are all 

too heavy and only neutralinos 

(WIMPs) are produced?&

monojets!&

ATLASCCONFC2012C003&

24&
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LHC can directly produce 
WIMP pairs

LHC can produce heavier 
particles beyond the SM that 
decay to WIMP pairs and SM 

particles

Searching for dark matter at colliders

LHC cannot produce WIMPs
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Phenomenology

23

Assumptions: 
- DM particle is only new state accessible to the 
collider
- Effective field theory so interaction between DM 
and SM particles is contact interaction
- Mediator can be integrated out

SM 
Lagrangian kinetic terms for DM

set of 4-Fermion interactions 
between DM and SM quarks

SM

SM

DM

DM

Operators ! describe scalar, pseudoscalar, vector, axial 
vector, tensor interactions 
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Phenomenology

SM

SM

DM

DM
g"gq

24

Bai, Fox and Harnik, 
JHEP 1012:048 (2010)

Assume  DM is a Dirac fermion and interaction is characterized by 
contact interaction,
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Phenomenology

25

Operators describe nature of mediator and form of SM-DM couplings.

Consider two possibilities:
(a) vector operator
(b) axial-vector operator

Set mass of mediator (M) to very high value

Bai, Fox and Harnik, 
JHEP 1012:048 (2010)

Assume  DM is a Dirac fermion and interaction is characterized by 
contact interaction,

SM

SM

DM

DM
g"gq
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Phenomenology

26

Set mass of mediator (M) to very high value

(a) For vector mediator, effective operator

spin-
independent

Bai, Fox and Harnik, 
JHEP 1012:048 (2010)

Assume  DM is a Dirac fermion and interaction is characterized by 
contact interaction,

SM

SM

DM

DM
g"gq
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Phenomenology

27

Set mass of mediator (M) to very high value

(b) For axial-vector mediator, effective operator

spin-dependent

Bai, Fox and Harnik, 
JHEP 1012:048 (2010)

Assume  DM is a Dirac fermion and interaction is characterized by 
contact interaction,

SM

SM

DM

DM
g"gq
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Phenomenology

Light mediator
- Assume DM interaction is mediated by light particle
- Effective theory breaks down and explicitly have to include mediator mass.
- Consider M = 100 GeV, 400 GeV with width set to 1% of mass.

28

SMDM

DM
g!

SM

SM

DM

DM

g"gq
26

SMDM

DM
g!

SM

SM

DM

DM

g"gq

M = 100, 400 GeV
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Dark matter searches

Dark matter pair production at LHC
- radiation of a photon/jet from initial state
- DM particles produce missing energy

29



Search for dark matter in monojet and monophoton 
events
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Search for dark matter in monojet and monophoton events

Simple and striking signatures

Highest pT monophoton event,
pT(photon) = 384 GeV, MET  = 407 GeV  

A monojet event,
pT(jet) = 331 GeV, MET  = 359 GeV  

31

http://arxiv.org/abs/1204.0821

http://arxiv.org/abs/1204.0821
http://arxiv.org/abs/1204.0821
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Measurement Strategy
- ‘cut and count’ : apply event selection and count number of events in signal region
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

32
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Measurement Strategy
- ‘cut and count’ : apply event selection and count number of events
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Signal

jet

Met 

33
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Measurement Strategy
- ‘cut and count’ : apply event selection and count number of events
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Z

ν

ν
W

e/μ/τ

ν

Backgrounds

W+jets, lepton is lost, tau decays 
hadronically 

jet

Mis-measured jet

QCD, jet is mismeasured, 
producing Met.

Signal

jet

jet jet

Met 

34

Z→!! +jet, irreducible 
background, looks just like signal
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Measurement Strategy
- ‘cut and count’ : apply event selection and count number of events
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Z

ν

ν
W

e/μ/τ

ν

Backgrounds

Z→!! +jet, irreducible 
background, looks just like signal

W+jets, e/u is not detected, tau 
decays hadronically 

jet

Mis-measured jet

QCD, jet is mismeasured, 
producing Met.

Signal

jet

jet jet

Met 

35
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Measurement Strategy
- ‘cut and count’ : apply event selection and count number of events
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Z

ν

ν
W

e/μ/τ

ν

Backgrounds

jet

Mis-measured jet

QCD, jet is mismeasured, 
producing Met.

Signal

jet

jet jet

Met 

36

Z→!! +jet, irreducible 
background, looks just like signal

W+jets, e/u is not detected, tau 
decays hadronically 
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Jet Multiplicity
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Measurement Strategy

Select topology
• Large missing energy, Met > 350 GeV

• One energetic jet, pT > 110 GeV, |η| < 2.4

•  Veto event if it has more than 2 jets (with pT > 30 GeV)

Reject background
• QCD
- Δφ(j1,j2) > 2.5 
-remove events with back to back jets
• EWK
-reject events with isolated electrons, muons 
-veto events with isolated tracks
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Results

Dominant backgrounds from Z-->vv (70%) and W+jets (~30%) are estimated from data

this is what signal would look like , for axial 
vector interaction with DM mass = 1 GeV
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Results

No excess of events over expected SM backgrounds
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Selecting monophoton events
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Photon selection
* pT > 145 GeV
* Central region of detector, |η| < 1.4442
* Shower shape in calorimeter consistent with photon

MET
* MET > 130 GeV

Remove excessive hadronic activity
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No excess of events over expected SM backgrounds

41

Results
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CDF monojet analysis

42

arXiv:1203.0742v1
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FIG. 1: Distribution of the jet ET for the multijet control (a), electroweak control (b), and analysis (c) samples. The last bin
contains the overflow. For the analysis sample, the jet ET of a representative signal process (χχ̄+jet) is shown normalized to
the 90% confidence level upper limit production rate of 5.9 pb.

section.
We set limits on the DM production rate using a

Bayesian likelihood [33] formed as a product of likeli-
hoods over bins in the analysis region of the jet ET dis-
tribution. We assume a flat prior on the signal rate, and
a Gaussian prior for each systematic uncertainty includ-
ing those affecting sample normalizations and shapes.
We set Bayesian 90% confidence level upper limits on
σ(pp̄ → χχ̄+ jet) for each of the models considered. The
expected upper limits at each model point are derived by
randomly generating a series of pseudo-datasets, derived
from the background prediction, and computing the me-
dian of the distribution of resulting upper limits. The
upper limits are listed in Table II. We proceed to con-
vert the limits into constraints on the DM-nucleon cross
section following [6, 8]. A comparison of the CDF lim-
its to several direct detection results is shown in Fig. 2.
The CDF limits assuming light mediators are also shown.
The CDF bounds extend beyond the experimental reach
of direct detection searches, which are insensitive to DM
with a mass of approximately 1 GeV/c2. For a DM mass
of 5 GeV/c2, CDF bounds on spin-independent inter-
actions are O(10−38) cm2 and are similar to the limits
reported by the DAMIC [34] collaboration. In the case of
spin-dependent interactions, we report stronger bounds
of O(10−40) cm2 for a DM mass of 1 GeV/c2, rising to
O(10−39) cm2 for a mass of 200 GeV/c2.
In conclusion, we have performed the first collider

search for DM in the monojet production mode. We
have set limits on the DM production rate, and have
constrained the spin-independent nucleon-DM scattering
rate for a DM mass of roughly 1 GeV/c2, and between 1
and 200 GeV/c2 for spin-dependent interactions.
We thank the Fermilab staff and the technical staffs

of the participating institutions for their vital contribu-
tions. This work was supported by the U.S. Department
of Energy and National Science Foundation; the Italian
Istituto Nazionale di Fisica Nucleare; the Ministry of
Education, Culture, Sports, Science and Technology of

TABLE I: Event totals in the analysis and control samples.
Uncertainties are systematic only.

Source Multijet Electroweak Analysis
Z 6949 ± 840 1280 ± 155 22191 ± 2681
W 14986 ± 2007 5582 ± 747 27892 ± 3735

Multijet 165479 ± 82740 1066 ± 533 3278 ± 1639
Other 2194 ± 233.4 149 ± 10.7 545 ± 39.3

Total model 189608 ± 82787 8076 ± 1011 53906 ± 6022
Data 188361 7942 52633

TABLE II: Expected (Exp.) and observed (Obs.) 90% C.L.
upper limits (in pb) on the cross section of pp̄ → χχ̄ + jet
for the three operators (defined in text) OAV , OV , and Ot,
assuming contact interactions. The ±1σ variations on the
expected limits are also shown.

— OAV — — OV — — Ot —

Mχ Obs. Exp. Obs. Exp. Obs. Exp.

(GeV/c2) (pb) (pb) (pb) (pb) (pb) (pb)

1 5.9 7.6+4.9
−3.6 9.1 7.8+5

−3.5 6.5 7.2+4.3
−3.6

5 6.9 7.9+4.8
−3.6 5.4 8.1+4.9

−4.1 7.5 8.1+4.4
−3.6

10 4.5 7.9+4.8
−3.5 6.4 7.7+4.4

−3.6 5.0 7.0+4.2
−3.1

50 3.4 7.0+4.2
−3.4 6.6 7.5+4.6

−3.4 5.3 6.5+4.0
−3.1

100 4.5 6.0+3.6
−2.9 5.7 6.2+3.7

−2.8 4.6 6.1+3.7
−2.9

200 4.8 5.6+3.2
−2.7 3.9 5.6+3.6

−2.7 4.2 4.8+3.2
−2.2

300 3.1 6.1+3.9
−2.7 3.5 5.6+3.4

−2.4 2.7 5.1+3.2
−2.4

Japan; the Natural Sciences and Engineering Research
Council of Canada; the National Science Council of the
Republic of China; the Swiss National Science Founda-
tion; the A.P. Sloan Foundation; the Bundesministerium
für Bildung und Forschung, Germany; the Korean World
Class University Program, the National Research Foun-
dation of Korea; the Science and Technology Facilities
Council and the Royal Society, UK; the Russian Founda-
tion for Basic Research; the Ministerio de Ciencia e In-
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FIG. 1: Distribution of the jet ET for the multijet control (a), electroweak control (b), and analysis (c) samples. The last bin
contains the overflow. For the analysis sample, the jet ET of a representative signal process (χχ̄+jet) is shown normalized to
the 90% confidence level upper limit production rate of 5.9 pb.

section.
We set limits on the DM production rate using a

Bayesian likelihood [33] formed as a product of likeli-
hoods over bins in the analysis region of the jet ET dis-
tribution. We assume a flat prior on the signal rate, and
a Gaussian prior for each systematic uncertainty includ-
ing those affecting sample normalizations and shapes.
We set Bayesian 90% confidence level upper limits on
σ(pp̄ → χχ̄+ jet) for each of the models considered. The
expected upper limits at each model point are derived by
randomly generating a series of pseudo-datasets, derived
from the background prediction, and computing the me-
dian of the distribution of resulting upper limits. The
upper limits are listed in Table II. We proceed to con-
vert the limits into constraints on the DM-nucleon cross
section following [6, 8]. A comparison of the CDF lim-
its to several direct detection results is shown in Fig. 2.
The CDF limits assuming light mediators are also shown.
The CDF bounds extend beyond the experimental reach
of direct detection searches, which are insensitive to DM
with a mass of approximately 1 GeV/c2. For a DM mass
of 5 GeV/c2, CDF bounds on spin-independent inter-
actions are O(10−38) cm2 and are similar to the limits
reported by the DAMIC [34] collaboration. In the case of
spin-dependent interactions, we report stronger bounds
of O(10−40) cm2 for a DM mass of 1 GeV/c2, rising to
O(10−39) cm2 for a mass of 200 GeV/c2.
In conclusion, we have performed the first collider

search for DM in the monojet production mode. We
have set limits on the DM production rate, and have
constrained the spin-independent nucleon-DM scattering
rate for a DM mass of roughly 1 GeV/c2, and between 1
and 200 GeV/c2 for spin-dependent interactions.
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TABLE I: Event totals in the analysis and control samples.
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Source Multijet Electroweak Analysis
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Multijet 165479 ± 82740 1066 ± 533 3278 ± 1639
Other 2194 ± 233.4 149 ± 10.7 545 ± 39.3

Total model 189608 ± 82787 8076 ± 1011 53906 ± 6022
Data 188361 7942 52633

TABLE II: Expected (Exp.) and observed (Obs.) 90% C.L.
upper limits (in pb) on the cross section of pp̄ → χχ̄ + jet
for the three operators (defined in text) OAV , OV , and Ot,
assuming contact interactions. The ±1σ variations on the
expected limits are also shown.

— OAV — — OV — — Ot —

Mχ Obs. Exp. Obs. Exp. Obs. Exp.

(GeV/c2) (pb) (pb) (pb) (pb) (pb) (pb)

1 5.9 7.6+4.9
−3.6 9.1 7.8+5

−3.5 6.5 7.2+4.3
−3.6

5 6.9 7.9+4.8
−3.6 5.4 8.1+4.9

−4.1 7.5 8.1+4.4
−3.6

10 4.5 7.9+4.8
−3.5 6.4 7.7+4.4

−3.6 5.0 7.0+4.2
−3.1

50 3.4 7.0+4.2
−3.4 6.6 7.5+4.6

−3.4 5.3 6.5+4.0
−3.1

100 4.5 6.0+3.6
−2.9 5.7 6.2+3.7

−2.8 4.6 6.1+3.7
−2.9

200 4.8 5.6+3.2
−2.7 3.9 5.6+3.6

−2.7 4.2 4.8+3.2
−2.2

300 3.1 6.1+3.9
−2.7 3.5 5.6+3.4

−2.4 2.7 5.1+3.2
−2.4
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• MET > 60 GeV
• leading jet pT > 60 GeV, |!| < 1.1
• "#(MET,jet)  requirements to reject QCD
• veto isolated tracks to reject EWK

http://lanl.arxiv.org/abs/1203.0742v1
http://lanl.arxiv.org/abs/1203.0742v1
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Setting limits on DM-nucleon cross section
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Setting limits on DM-nucleon cross section

Translating collider limits to the same plane as direct detection experiments
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Setting limits on DM-nucleon cross section

SM

SM

DM

DM

Translating collider limits to the same plane as direct detection experiments

Axial-vector 
operator

• Upper limits on monojet/monophoton cross sections converted to lower limits on "
• Lower limits on " then translated to spin-dependent DM-nucleon cross-section

sum of quark helicities 
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Dark matter interpretation - CDF results

Light mediator case
- mediator mass = 100 GeV, 400 GeV

Spin-independent Spin-dependent
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Dark matter spin dependent results

Limits represent the most stringent constraints over almost entire 
1 -1000 GeV mass range
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Dark matter spin independent results

Best constraints for low mass dark matter, below 3.5 GeV, a region as yet 
unexplored by direct detection experiments
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Interpretation of 1fb-1 ATLAS results

arXiv:1109.4398v1

ATLAS results coming soon........

http://lanl.arxiv.org/abs/1109.4398v1
http://lanl.arxiv.org/abs/1109.4398v1
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Summary

• Presented results from searches for dark matter at the Tevatron and LHC
• Searches in monojet and monophoton channels used to set limits on DM-
nucleon cross-section
• Searches give competitive constraints for spin-dependent cross section 
over large DM mass range
• Extend the spin-independent region into low DM mass < 3.5 GeV, 
previously unexplored.
• Colliders constraints on DM complementary to those from direct 
detection and indirect detection 


